Silicone fouling-release coatings: effects of the molecular weight of poly(dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength.
نویسندگان
چکیده
A series of poly(dimethyl siloxane) (PDMS)/silica nanocomposites were synthesized utilizing a sol gel method. The samples were evaluated using pseudobarnacle adhesion and tensile strength tests. The effects of the molecular weight of the PDMS and the size and structure of the silica domains on biofouling release and the mechanical behavior of the PDMS/silica materials were investigated. Three different molecular weights (18,000, 49,000 and 79,000 g mol(-1)) of hydroxyl-terminated PDMS (HT-PDMS) were used to prepare the nanocomposites with three different weight ratios (1:1, 3:1 and 5:1) of HT-PDMS to tetraethyl orthosilicate (TEOS). TEOS served as a crosslinker to form PDMS networks and as a precursor to form silica domains. Two different variants of TEOS with regard to its degree of polymerization (n) (monomeric type: n ≈= 1 and oligomeric type: n ≈= 5) were used for in situ formation of silica particles via the sol-gel process. The mechanical properties of the composites were characterized using stress-strain isotherms. All the mechanical properties evaluated (Young's modulus, tensile strength, energy required for rupture, elongation at break) improved with increases in the molecular weight of the HT-PDMS and the silica content. The pseudobarnacle adhesion test was used to examine the fouling- release (FR) properties of coatings applied on aluminum plates. The rupture energy and tensile strength increased substantially when oligomeric TEOS was employed in the PDMS/silica composites. Scanning electron microscopy (SEM) was used to investigate the structure of the silica domains. It was found that the use of oligomeric TEOS in higher molecular weight PDMS samples with higher PDMS/TEOS weight ratios led to low pseudobarnacle adhesion strengths of ≈ 0.3 MPa, which is in the range of commercial FR coatings.
منابع مشابه
Structure-property relationships of silicone biofouling-release coatings: effect of silicone network architecture on pseudobarnacle attachment strengths.
Model silicone foul-release coatings with controlled molecular architecture were evaluated to determine the effect of compositional variables such as filler loading and crosslink density on pseudobarnacle attachment strength. Pseudobarnacle adhesion values correlated with filler loadings in both condensation and hydrosilylation-cured silicones. Variation of crosslink density of hydrosilylation-...
متن کاملIncorporation of silicone oil into elastomers enhances barnacle detachment by active surface strain.
Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastome...
متن کاملSilicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths.
Silicone biofouling release coatings have been shown to be an effective method of combating fouling. Nearly all silicone foul release coatings are augmented with an oil additive to decrease macrofouling attachment strength. This paper addresses the effect of the type of oil that is incorporated into the silicone coating and the type of silicone coating itself (silica vs calcium carbonate filled...
متن کاملTemporal and Spatial Variations in Macrofouling of Silicone Fouling-Release Coatings
Nontoxic, low surface free energy silicone coatings having reduced biofouling adhesion strength have been developed as an alternative to antifouling paints. Silicone coatings permit macrofouling to adhere; however, fouling can be removed easily by water pressure or light scrubbing. One of the current methods used to evaluate the performance of non-toxic silicone foulingrelease coatings relies h...
متن کاملEvaluation of the performance enhancement of silicone biofouling-release coatings by oil incorporation.
In response to increased evidence of ecosystem damage by toxic antifouling paints, many researchers have developed nontoxic silicone fouling release coatings. The fouling release capability of these Systems may be improved by adding nonbonding silicone oils to the coating matrix. This idea has been tested by comparing the adhesion strength of hard- and soft-fouling organisms on a cured polydime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biofouling
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2012